The Effects of Failed Defibrillation Attempts on Waveform Characteristics of Ventricular Fibrillation

Jacob Thomas, David D. Salcido, Allison C. Keller, Matthew L. Sundermann, Jessica Salerno, and James J. Menegazzi

University of Pittsburgh School of Medicine

Disclosures:

This work was supported by grant 1RO1HL117979 from the National Heart, Lung, and Blood Institute (Dr. Menegazzi, PI). In his laboratory, Dr. Menegazzi uses a monitor/defibrillator loaned to him by Zoll Medical Corporation, and a mechanical chest compression device loaned to him by Physio-Control. He has no financial interest in either of these two companies. None of the other authors have anything to disclose.

Background

• 350,000 people experience out-of-hospital cardiac arrest (OHCA) with a total survival rate to hospital discharge of 12%¹

• 25% of presenting rhythms are ventricular fibrillation (VF)

• Early defibrillation with CPR is the first line treatment for VF
Quantitative Electrocardiogram (QECG)

- Waveform pattern of VF changes over the time in arrest
 - Coarse to fine
- Waveform analysis techniques were used to develop measurements that correlate with time in VF and defibrillation success²,³

Our Research Question and Hypothesis

- What is the effect of failed rescue shocks on the electrical pattern of VF?
- We predicted that failed rescue shocks would have a negative effect on QECG values and be reflected in a decrease in QECG values.

Our approach

- Retrospective study using data from the Continuous Chest Compressions (CCC) trial of the Resuscitation Outcomes Consortium (ROC).
- Measure the QECG values of before and after shock for patients in VF with failed shocks
QECG methods used4-7

<table>
<thead>
<tr>
<th>Amplitude Spectrum Area</th>
<th>Centroid Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{AMSA} = \sum_{n=0}^{N-1} A_n \times f_i$</td>
<td>$\text{CF} = \frac{\int_{0}^{\infty} \text{PSD}(f) \times f , df}{\int_{0}^{\infty} \text{PSD}(f) , df}$</td>
</tr>
<tr>
<td>Median Slope</td>
<td>Detrended Fluctuation Analysis</td>
</tr>
<tr>
<td>$\text{Median Slope} = \text{median}(\text{ecg}_t - \text{ecg}_t - 1)$</td>
<td>$F(n) = \left</td>
</tr>
</tbody>
</table>

Data Processing

1. Prehospital ECG data extracted from ROC CCC database
2. Patients were screened to select those with a failed shock
 • In VF before and after shock delivery
3. Quality of ECG screened to confirm QECG values could be calculated from data
 • Sufficient time
 • No chest compressions
 • Within 180 seconds of shock
 • No other issues with ECG data quality
4. Selected ECG window input into a custom MATLAB script that calculates QECG values
Results

5,195 Total Shocks
1,399 Analyzable Shocks
681 unique patients
520 first shocks

Excluded
~1000 successful shocks
~3000 excluded for quality reasons:
• No 3 sec window
• Pad disconnections
• Evidence of compressions

Distribution of shock number

Time from shock to post shock QECG measurements
QECG results

<table>
<thead>
<tr>
<th></th>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMSA*</td>
<td>4.83</td>
<td>5.60</td>
</tr>
<tr>
<td>CF*</td>
<td>7.05</td>
<td>7.36</td>
</tr>
<tr>
<td>DFA</td>
<td>3.28</td>
<td>1.27</td>
</tr>
<tr>
<td>MS*</td>
<td>2.36</td>
<td>2.44</td>
</tr>
</tbody>
</table>

* = significant at p < 0.01

AMSA results*

CF results*
DFA results

MS results*

Relationship of change in QECG values to time
Discussion

- Results did not match our hypothesis of a negative effect
- Possible explanations:
 - Floor Effect
 - CPR improves QECG values
 - Possible that modern biphasic shocks are not as harmful as earlier monophasic shocks

Limitations

- Use of prehospital data leads to large number of patients being excluded for quality issues
- Length of time between shock delivery and post-shock measurements

Conclusions

- We did not observe a major quantitative effect of failed defibrillation attempts. If anything showed, a slight improvement.
Acknowledgements

- James J. Menegazzi
- David D. Salcido
- Matthew Sundermann
- Allison Koller
- Jessica Salerno
- ROC
- University of Pittsburgh School of Medicine Dean’s Summer Research Program

References