Small Victims and Serious Play: Simulations and Video Games for Pediatric Disaster Education

Mark X. Cicero, MD
Associate Professor of Pediatrics
Director, Pediatric Disaster Preparedness
Section of Pediatric Emergency Medicine
Departments of Emergency Medicine and Pediatrics
Yale University School of Medicine

Disclosures
I have no commercial interests to disclose

The PRIDE research network has received funding from:
• Emergency Medical Services for Children
• Agency for Healthcare Research and Quality

Objectives
• Understand the scope, importance, and challenges of pediatric disaster education
• Recall the advantages and limitations of 'live' and screen-based simulation modalities
• Consider means for incorporating disaster simulations and video games into initial and continuing education programs
Types of Disasters

Sudden
- Unexpected
- All victims ill or injured simultaneously
- Examples: tornadoes, school shootings, nerve gas attacks

Delayed
- Incubation period
- Range of times to presentation and degrees of illness/injury
- Examples: pandemic influenza, biological weapons

What Disasters Have In Common

- Overwhelm health care resources
 - Scale
 - Duration
 - Preexisting resources

- Children are disproportionally harmed
 - Physically
 - Emotionally
 - Family separation
 - Poverty

Balance of Needs and Resources

- Patients
- Healthcare needs
- Community needs
- Media attention
- Personnel
- EMS Resources
- Medical equipment
- Pharmaceuticals
- ORs
- Hospital rooms
- ICU Space
Scope of EMS Pediatric Disaster Education

- Scene Safety
- Mutual aid
- Triage
- Initial Treatment
- Decontamination
- Family reunification and transport
- Alternate care sites
- Interface with:
 - Public health
 - Receiving facilities
 - Police and other authorities

Challenges To EMS Pediatric Disaster Education

- Time
 - Initial training
 - Continuing Education
- Dys-Synchrony of training and practice
 - Uncommon patient group
 - Rare events
- Decay of knowledge, skill, and self-efficacy
- Unclear what methods effective
Curriculum Development: Kern Method

Step 1: General needs assessment
- Current educational practice
- Ideal Approach

Step 2: Needs assessment of targeted learners
- Previous disaster training and experience
 - Attitudes about need for disaster education (Likert Scale)
 - Self-reported comfort with triage, treatment, preparedness, and disaster mental health

Step 3: Goals and Objectives

Step 4: Educational strategies
- Didactic
- Experiential

Step 5: Implementation

Step 6: Evaluation and Feedback

Modified Kirkpatrick Hierarchy: Program Evaluation

- Higher level outcomes more difficult to:
 - Measure
 - Establish causation of improvement

Barr, 2000
Pediatric Disaster Education: Live Simulations

• Advantages
 • Hands on skill practice
 • Debriefing in real time
 • Closest to reality

• Limitations
 • Costly
 • Schedule constraints

Live Simulations for Improving Triage Accuracy: Study Design

Live Simulations for Improving Triage Accuracy: Results

• Live simulations yielded a sustained 10% improvement in triage accuracy 6 months after the educational intervention
• The greatest improvements in accuracy were for triage RED and YELLOW patients
Rationale For Using Video Game Education

STUDY PROTOCOL
Testing a videogame intervention to recalibrate physician heuristics in trauma triage: study protocol for a randomized controlled trial

Derek Michael*, Matthew R. Rosengart†, Earle Fischhoff†, David C. Anguig*2, Corren Tanis*3, Donald M. Hoss3, David J. Malisac*3, and Amber E. Basnet*4

OPEN ACCESS
PLOS ONE

Assessing the Validity of Using Serious Game Technology to Analyze Physician Decision Making

Dewshka Mihawa1, Derek C. Angus2, Matthew R. Rosengart1, Corren Tanis2, Earle Fischhoff2, Matthew J. Hoss3, Amber E. Basnet4

1 Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States
2 Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States
3 Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States
4 Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States

* Decisions about trauma transfers in a video game correlated with physician practice

60 SECONDS TO SURVIVAL DISASTER TRIAGE

School Shooting
Home Fire
Tornado

Score: 23.00
Play
Locked

Start
Instructions
High Score

60 Seconds to Survival Pediatric Disaster Video Game

Patient Characteristics in 60 Seconds to Survival
- Full range of pediatric and adult ages
- Children with special healthcare needs
- Injury types and severity mirror the nodes of the combined START/JumpSTART algorithm (Nadeau, 2017)

Advantages of Video Game Education
- Victims represented in the game
 - Can depict many patients
 - Children can be portrayed without pediatric standardized patients or manikins
- Educational delivery
 - Asynchronous learning
 - Experience is standardized
 - No need for facilitators or instructors
 - Feedback is immediate
- Good match for the learner population
Limitations of Video Game Education

Lacks realism
- Emotional connection
- Distraction

Debriefing
- On-screen feedback can bridge the gap
- Addresses evaluation phase of Kern method

Expenses
- Difficult to modify for different triage system

Participants enrolled for the study (n=62)

- Excluded did not show up to first session (n=6)

Participants allocated to control (n=23)

- Excluded from analysis did not complete second session (n=8)
- Did not play game ≥3 times in intervention group (n=5)

Participants allocated to control (n=39)

- Excluded from analysis did not complete second session (n=2)

Consort Statement: Randomized Controlled Trial of Video Game Disaster Education (Intervention) vs. No training
- Both groups completed live simulations at beginning and end of study period
- Assessed for improvement in triage accuracy

Video Games for Improving Triage Accuracy: Results

- Video game play yielded a 10% improvement in triage accuracy 3 months after study onset
- The improvement was similar to that seen in the live simulation study
- The control group improved similarly
Incorporating Pediatric Disaster Simulations and Video Games Into EMS Education

- Choose the simulation to meet the educational goals
 - Number and kinds of patients
 - Scale: agency, school, community, healthcare system
 - Target change in attitudes, knowledge, practice, or outcomes
 - Evaluation and measurement
- Keep the goal the goal

Incorporating Disasters Into Training

- Needs assessment
 - Hazard vulnerability analysis
 - Reactive
 - Anticipatory (e.g., Ebola)
- Educational intervention
 - Didactic
 - Tabletop
 - Small group
 - Video game
- Evaluation

Incorporating Pediatric Disaster Simulations and Video Games Into EMS Education

- Frequency and duration of intervention
 - Initial learning
 - Re-inoculation
 - Just-in-time training
- Represent children in mass casualty training
 - Triage Tuesdays
 - Incident command system mini-drills
 - Work with schools, daycare centers, religious groups
Conclusion

• Live simulations and video game learning improve EMS pediatric disaster knowledge, skills, and practice
• These methods are useful for maintaining and testing readiness for child disaster victims
• A version of the game is available at: disastertriagegame.org

Take home points:

1. Understanding prehospital educational needs, just-in-time training, and need for periodic re-education likely yield best performance in a disaster.
2. Pediatric disaster preparedness and training are training for daily pediatric emergencies.
3. Matching the educational modality to the educational goals improves uptake and efficiency.