Syringe Administration of Epinephrine by Emergency Medical Technicians for Anaphylaxis

Andrew Latimer, MD
Sofia Husain, MPH
Jonathan Nolan, MICP
Vinod Doreswamy, MD
Thomas Rau, MD, MPH
Michael Sayre, MD
Mickey Eisenberg, MD, MPH, PhD

University of Washington
Department of Emergency Medicine
King County EMS
Seattle Fire Department, Medic One

DISCLOSURES

• None

BACKGROUND

• Intramuscular epinephrine is the cornerstone of therapy for anaphylaxis and severe allergic reaction in the pre-hospital environment

THE USE OF EPINEPHRINE FOR OUT-OF-HOSPITAL TREATMENT OF ANAPHYLAXIS
National Association of EMS Physicians
Prehospital Emergency Care 18:1, 2014
BACKGROUND

• In 2014, in response to rising epinephrine autoinjector (EAI) costs, "Check and Inject Program" was implemented in King County, WA

STUDY AIM

• Our investigation into the King County experience over the first 2 ½ years of the "Check and Inject Program" sought to determine if EMTs can implement a protocol utilizing syringe administration epinephrine for patients experiencing presumed prehospital anaphylaxis and/or severe allergic reaction
METHODS

• Cases collected prospectively as patients were treated by EMTs with IM epinephrine as part of the “Check and Inject Program”

• Cases from the ~2,700 EMTs in the County were collected from July 2014 through December 2016

• Cases from the ~800 EMTs in the Seattle Fire Department were collected from January 2016 through December 2016
METHODS

- Cases identified through a phone log, the replacement kit process, and an electronic database search
- Data was abstracted from the EMS medical record and "Check and Inject" QI forms collected from the EMT units
- Each EMS medical record was independently reviewed by two Emergency Physicians

RESULTS

- 422 cases of EMT administered epinephrine during the study period
- 11 cases excluded for irrecoverable incident report forms
- 411 cases included in the analysis

 (~ 8 / 100,000 person years)
Characteristic | **N (%)**
---|---
Gender | |
Male | 182 (44.3)
Female | 239 (55.7)
Age | |
<5 yo | 33 (8.0)
5-14 yo | 40 (9.7)
15-64 yo | 299 (72.7)
>65 yo | 39 (9.5)
Epi was administered prior to EMS arrival | |
| 33 (8.0)
Patient/Family | 25 (6.1)
Healthcare Provider | 6 (1.5)
Other | 2 (0.5)

Putative Allergic Triggers

<table>
<thead>
<tr>
<th>Category</th>
<th>N (%)</th>
</tr>
</thead>
</table>
| Food – Nuts | 92 (22.4)
Food – Shellfish | 28 (6.8)
Food – Other | 83 (20.2)
Drug – NSAIDs | 8 (1.9)
Drug – Antibiotics | 26 (6.3)
Drug – Other | 35 (8.5)
Insect Sting – Bee | 59 (14.4)
Insect Sting – Other | 13 (3.2)
Other/Environmental | 24 (5.8)
Not documented/Unknown | 43 (10.5) |
Vital Signs (Prior to administration of IM epi)

<table>
<thead>
<tr>
<th>Vital Sign</th>
<th>Mean (SD)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiratory Rate, mean per minute</td>
<td>22 (7.5)</td>
<td>*</td>
</tr>
<tr>
<td>Respiratory Rate, ≥ 20 respirations/min</td>
<td>223 (67.2)</td>
<td></td>
</tr>
<tr>
<td>Pulse Rate, mean per minute (SD)</td>
<td>104 (23.1)</td>
<td>†</td>
</tr>
<tr>
<td>Pulse Rate, ≥ 100 bpm</td>
<td>226 (63.5)</td>
<td>†</td>
</tr>
<tr>
<td>Pulse Rate, ≤ 60 bpm</td>
<td>54 (4.0)</td>
<td>†</td>
</tr>
<tr>
<td>Any abnormal vital sign prior to epinephrine administration</td>
<td>180 (62.5)</td>
<td>°</td>
</tr>
</tbody>
</table>

* Based on 332 cases where a respiratory rate was documented prior to epi administration.
† Based on 356 cases where a pulse rate was documented prior to epi administration.
° BP < 90, or pulse ≥ 100 bpm, or respiratory rate ≥ 20 respirations/min, or SpO₂ < 90%. Out of 411 cases.

Symptoms/Signs

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Count (Percentage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypotension (BP < 90)</td>
<td>106 (25.8)</td>
</tr>
<tr>
<td>Hives</td>
<td>241 (58.6)</td>
</tr>
<tr>
<td>Respiratory Distress</td>
<td>188 (45.7)</td>
</tr>
<tr>
<td>Swelling of the face, lips, or oropharynx</td>
<td>189 (46.0)</td>
</tr>
</tbody>
</table>

Number of symptoms:

<table>
<thead>
<tr>
<th>Number of symptoms</th>
<th>Count (Percentage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients with only 1 symptom</td>
<td>63 (15.3)</td>
</tr>
<tr>
<td>Patients with 2 or more symptoms</td>
<td>355 (74.6)</td>
</tr>
</tbody>
</table>

• 9.5% of patients received a second dose of epinephrine

• There were 2 cases of cardiac arrest from clear anaphylaxis that received IM epinephrine during the study period
 – Both patients were successfully resuscitated to hospital admission
 – One patient died in the hospital
 – One patient survived neurologically intact
DISCUSSION

• In our cohort, EMTs identified appropriate patients meeting the criteria of the “Check and Inject” standing order

• No documented adverse outcomes related to epinephrine administration based on review of prehospital care

• No provider injuries
LIMITATIONS

• Unable to obtain follow-up information and patient outcomes from hospital records

• Complications to EMT Epi that were not observed in the prehospital setting may have been missed

• The physician assessment relied on the EMS report forms and did not independently verify the history or exam

CONCLUSIONS

• We found that EMTs in King County successfully implemented the “Check and Inject” protocol for IM epinephrine administration in a manner that typically agreed with physician review and without any overt identified safety issues.

• Our findings support the potential for effective manual aspiration and IM administration of epinephrine by EMTs in a mature system that undertakes ongoing training and continuous quality review.

Questions?

alatim@uw.edu

@alatimer13