EMS Subspecialty Certification Review Course

Delivery Systems with Special Considerations

2025

American College of Emergency Physician

1

ABEM EMS Core Content

2.2.3	Delivery Systems with Special Considerations	
2.2.3.1	Urban EMS	
2.2.3.2	Rural EMS	
2.2.3.3	Wilderness EMS	
2.2.3.4	Volunteer EMS	
2.2.3.5	Inter-facility transport	
2.2.3.6	Military EMS	
2.2.3.7	Air medical	
2.2.3.8	International EMS	

American College of Emergency Physician

2

Learning Objectives

Upon the completion of this program participants will be able to:

- Describe the various aspects and challenges of medical direction of varied types of EMS systems
- 2. Describe features of each system that make it unique but part of a larger global EMS system

Delivery Settings

One way of classifying is based on the geographic setting of an EMS system

- Urban/Suburban
- Rural
- · Wilderness (Day 3)

American College of Emergency Physician

4

Urban EMS

- High to moderate population densities
- · Largely self-contained destination hospital resources
 - Generally -> shorter hospital transport times
- Higher patient volume -> more \$\$ opportunities
 - Can have multiple agencies with overlapping areas of response (gov agencies, private companies, hospital-based)
 - Coordination & efficiency is critical
- Combination of emergency & non-emergency ambulance services

American College of Emergency Physician

5

Urban EMS: System-Level Oversight

- · County/Regional level medical oversight
 - Regional medical director v council
- When multiple agencies are involved, need compatible:
 - Radios
 - Data exchange/aggregation
 - Mutual aid policies
 - Clinical protocols

Urban EMS: Single v Multiple Ambulance Service Providers

- Single Ambulance Service Providers
 - Pro: one infrastructure = less \$
 - Con: monopoly
- Multiple Ambulance Service Providers
 - Pro: competition
 - Con: duplication of infrastructure = more \$

American College of Emergency Physicians

7

Urban EMS: Single v Multiple Ambulance Service Providers

- The happy medium? Allow competition for the market rather than within the market
 - Competitive procurement process
 - Consequences for failing to meet requirements
 - Revisit the procurement process from time to time
- May also see a separation based on call type
 - Emergency ambulance: gov agency
 - Non-Emergency ambulance: private company

American College of Emergency Physician

ጸ

Urban EMS: ALS and/or BLS Levels of Care

- · All ALS ambulances
 - $\boldsymbol{-}$ Even if the call is under-triaged, ALS is there
 - \$\$\$: education, equipment, salary
- ALS + BLS ambulances
 - Calls may be under-triaged
 - Smaller cadre of medics -> less skill dilution... but how long does it take for ALS to get on scene?
 - $\boldsymbol{\mathsf{-}}$ Does the data support improved outcomes in ALS v BLS?
 - Especially with EMTs obtaining 12-lead EKGs, etc

Urban EMS: Tiered Response - Stay tuned... American College of European Physicians's Advance pages of Control of Contro

Urban EMS: Hospital Destination Policies

- Policies need to be in place to guide decision-making process for hospital destination
 - Right patient to the right hospital at the right time
 - Allowance for patient preference when reasonable $\,$
 - Specialty-care capabilities (STEMI, CVA/LVO, trauma, burn)
- Diversion policies
 - EMS Hospital administration collaboration is key

American College of Emergency Physician ADMANCING EMERGENCY CARE _______

11

10

Rural EMS

- Lower overall population density; some pockets of higher density in small towns/villages
 - Generally lower call volume
 - Longer transport time -> implications on protocols, staffing, etc
- Variable funding sources
 - Taxes
 - Subscription-service (ambulance insurance)
 - Volunteer system

American College of
Emergency Physicians
ADIANCING EMERGENCY CASE

A.

Rural EMS

- Smaller budgets ->
 - Less \$ to buy expensive technology
 - Ex. may not have e911 (cell tower reception; equipment \$)
- Response intervals are impacted by:
 - Staffing models: are they responding from home?
 - Geographical distances
 - Handling multiple calls at once, especially if the hospital is a ways away
 - What if the patient decompensates?

American College of Emergency Physicians'

13

Rural EMS

- Educational considerations
 - Where are classes being held?
 - What's the call volume? How are high-risk low-frequency skills maintained?
- Rural paramedic paradox
 - Low call volume, lower levels of funding -> really hard to pay for and properly support ALS
 - Longer transport times = more opportunity for a patient to get sicker... and really need ALS care

American College of Emergency Physicians

14

Rural EMS: Medical Oversight

- Major challenge
 - Many medical directors are not EM trained (let alone EMS trained)
 - May not have the $\$ to pay a medical director
 - Importance of considering distance education
 - Limiting factors:
 - · Liability insurance
 - Time commitment
 - Demands for service

16

Additional Delivery Settings

- Volunteer EMS
- Air Medical Transport
- Inter-Facility Transport
- · Military Medicine
- International

American College of Emergency Physicians

17

Volunteer EMS

- Similar challenges as Rural EMS Systems, although volunteer EMS providers do not work exclusively in rural EMS systems (30% EMS volunteers are in urban environments)
- Training (time, \$) can be a significant problem
- Volunteers typically work <40 hours/week
 - Limited call exposure
 - Skill degradation

Air Medical EMS

- EMS at the Crossroads (IOM, 2007) identified challenges in air medicine:
 - Growth primarily driven by reimbursement changes
 - Clinical efficacy, appropriateness w the challenges of of triage and use decisions
 - Safety
 - System integration and the interface of state/federal regulation

American College of Emergency Physician

10

Air Medical EMS: Early Stages in the US

- 1966 Accidental Death & Disability mentioned the potential use of HEMS in the developing trauma system
- 1970: Dr. R Adams Cowley (University of MD Shock-Trauma) partnered w Maryland State Police -> 911 police-based HEMS
- 1972: First hospital-based HEMS at St. Anthony's in Denver, CO (interfacility + scene 911)

American College of Emergency Physicians

20

Air Medical EMS

- CDC: 90% of the US population has access to level I or II trauma centers; 27% require HEMS transport to achieve timely access
- ~43 million Americans live in rural areas without timely access to specialist care... which will only get worse w rural hospital closures
- The population, especially in rural areas, is aging

Air Medical EMS

- 1997: Balanced Budget Act -> significantly increased CMS reimbursement for HEMS transport
- Coupled w regionalization of care, closure of rural ERs...
- Unsurprising tremendous growth in HEMS
 - Does this translate to improved outcomes?
 - Must consider patient, crew, and bystander safety

American College of Emergency Physicians'

22

Air Medical EMS: Outcomes

- AMS is controversial
 - It's expensive, but could decrease overall healthcare costs by decreasing length of stay or use of critical care resources
 - The challenge: assess risk/reward and identify cases where AMS is clear benefit
 - Inter-facility Transport: availability of more specialized services elsewhere (stroke, ACS, sepsis, OB, trauma)
 - Extended scope of practice/resources compared to local ground EMS
 - Distribution of patients in MCI/overcrowding

American College of Emergency Physicians

23

Air Medical EMS: Regulations

- States license air ambulances & provide oversight to medical care
- Due to the federal preemption under the Airline Deregulation Act, <u>states</u> have no jurisdiction over:
 - Aviation aspects of the program
 - Economics of providing services (decisions on certificates / determination of need, insurance regulation)

Air Medical EMS: Regulations

- Federal Aviation Administration is responsible for all aviation-specific issues under Title 14 of the Federal Code:
 - Safety inspections
 - Helicopter licensure
 - Air traffic control

American College of Emergency Physician

25

Air Medical EMS: Regulations

- FAR = Federal Aviation Regulations
 - FAR Part 91: General Operating and Flight Rules
 - FAR Part 135: Air Carrier Certificates, Commuter and On-Demand Operations and Rules Governing Persons on Board Such Aircraft
 - Pilot rest
 - Training
 - VFR/IFR rules
 - Maintenance

American College of Emergency Physicia

26

Air Medical EMS: Regulations

- Medical director needs to understand that the FAA requires the certificate holder maintain operational control of the aircraft at all times (go/no go, diversion, on board equipment, etc.)
 - Part 135 certificate holder may be different from the owner of the aircraft

Air Medical EMS: Regulations

CAMTS: voluntary industry gold-standard for AMS accreditation

American College of
Emergency Physicians
ADIANCING EMERGENCY CARE

A.

28

Air Medical EMS: Operations

- Bases: Hospital v Remote
- Staffing: Most have 2 providers (RN-RN, RN-EMTP)
 Specialty transport (perfusionist, RT, Neonatal RN)
- HEMS mission profile depends on the program (scene response, IFT)
- Fixed wing (airplane) v rotor wing (helicopter; HEMS)

American College of Emergency Physician:

29

Air Medical EMS: Operations

- HEMS: short, time dependent missions, weather dependent, 5-10 min launch time
 - 50-175 miles
- Fixed: longer to mobilize, airport dependent, less weather dependent, greater distances, need ground transport on either end
 - >150-175 miles

Air Medical EMS: Operations

- Aircraft Considerations
 - Space: airway management and patient access difficult
 - Weight: lift capacity is aircraft/weather dependent
 - Hearing: history and lung sounds BEFORE flight
 - Lighting: night vision issues for the pilot
 - Electronics: interference with nav equipment

American College of Emergency Physician:

31

Air Medical EMS: Operations

- Physiologic Considerations
 - Air Emboli/Decompression Illness: flown at LOWEST altitude possible (1000-2000 feet)
 - Motion sickness: weather, aircraft movement
 - Pretreat patient with antiemetic
 - "Flicker" seizures from sunlight shining through rotor blades-> strobe light-like stimulation

32

Air Medical EMS: Operations

- Visibility: 1 mile visibility, 500 foot ceiling (VFR min)
 IFR is possible, but generally requires landing at an airport
- Freezing Precipitation: grounds the aircraft
- Ambient Temperature
 - Higher temp, less dense the air = limits lift/capacity
- Landing Zone (LZ)
 - 100' x 100' without adjacent obstructions/debris
 - Weather/conditions can impact this

Air Medical EMS: Special Capabilities

- Difficult Area Access: remote wilderness, inaccessible areas secondary to flooding/snow/fire
- Aerial Rescue
- · Aerial Reconnaissance
- Search
- Mass gatherings: crowds and inaccessible areas
- Go Team: bringing the hospital resources to the patient's side

34

Inter-facility Transport

- "Closest, most appropriate" facility = challenge
- Patients self-present
- Regionalization of care, especially of specialty centers
- Diversion issues -> pts need to be secondarily brought to more appropriate definitive care

35

Inter-facility Transport

- Choosing an appropriate transport vehicle, appropriate level of personnel, and equipment for the transport requires evaluation of the patient's condition and potential needs for care during the transport.
- Sending physician and facility are legally responsible for appropriate transportation arrangements

Inter-facility Transport: Oversight

- Requires in-depth understanding of the most appropriate resources, personnel, and equipment to address a particular situation, and a clear understanding of the risk/benefit of transfer
- Transfers should be routinely reviewed to assure protocols were followed and there were no complications/unforeseen dangers, and design education/remediation

American College of Emergency Physicians

37

Inter-facility Transport

- Considerations
 - Vehicle type/equipment (availability?)
 - Staffing
- · Hazards of Transfer
 - Vehicle Crash
 - Lights and Siren
 - Helicopter Crash

American College of Emergency Physicia

38

Inter-facility Transport: Indications

- Trauma
 - Undertriage, local protocols
- Cardiac
 - Rapid transfer for PCI, VAD, IABP, ECMO
- Stroke
 - Reperfusion therapy, mechanical thrombectomy $\,$
- Burns
 - Airway management concerns, Shock, CO/CN
 - Burn centers promote healing and prevent infection $% \left(1,...,N\right) =0$

Inter-facility Transport: Indications

- · Spinal Trauma
 - Prevention of movement/extending the injury
- OB
 - Premature labor or Pre-eclampsia
 - By definition, any woman in labor is unstable
 - Can only be transferred if expected benefit > risk; premi infants born at neonatal centers are more likely to survive than nonneonatal centers
 - Most reliable indication for imminent delivery is > 4cm dil
- Peds/Neonatal
 - AAP has published transport guidelines based on experts
- Often require specialized care providers and equipment

40

Inter-facility Transport: Legal Issues

- Specific concerns:
 - Interstate transport: licensing, scope of practice, pronouncing should the patient expire during transport

American College of Emergency Physician

41

Inter-facility Transport: Legal Issues

- EMTALA
 - Sending hospital must perform MSE and decide if patient is "stable" v "unstable" $\!\!\!$
 - Active labor = unstable
 - If the patient is unstable, then the hospital must provide care (regardless of ability to pay), until stability achieved
 - If sending hospital is unable to provide necessary care, it must find an appropriate facility and arrange the transfer
 - MUST bring transfer paperwork, records, imaging, etc

Inter-facility Transport: Legal Issues

- EMTALA
 - May legally transfer an unstable patient if:
 - · Patient requests the transfer
 - Sending hospital not able to provide urgently needed service
 - Sending hospital has found an appropriate accepting hospital
 - Patient consents to the transfer after being formed of risks/benefits of the transfer

American College of Emergency Physicians

43

Military EMS

- Modern EMS was born out of military medical ops, particularly from the Vietnam War forward
- · Military EMS relies on three keys:
 - training non-medical soldiers in basic preventative medicine and lifesaving skills (ie: tourniquets)
 - a small group of well-trained medics
 - a system of graduated care
- Military lessons often translate into the civilian world

American College of Emergency Physician

44

Military EMS: Personnel & Facilities

- 1st echelon: scene to the aid station
- 2nd echelon: aid station to division level facility (ex forward surgical teams)
- 3rd echelon: transport to higher level of care: initial delivery of hospital care
- 4th echelon: communications zone-level health service support (general hospital, stabilize for trip back to the U.S.)
- 5th echelon: definitive care and rehab; in the U.S.

Military EMS: Lessons Learned

- Hemorrhage Control: probably THE single best lesson learned
 - The role of tourniquets
 - Hemostatic agents

American College of Emergency Physician

46

International EMS Systems

- EMS is well developed in some parts of the world, and in its infancy in others
- Most of the more matured systems have tiered levels of response

47

International EMS: Anglo-American Model

- · Non-physicians primarily staff ambulances
- As much care as possible is deferred until arrival at the hospital
- Physician involvement generally limited to direct and indirect medical oversight
- · Model largely driven by cost of physician salary

International EMS: Franco-German Model

- Heavily relies on physician-staffed field response
- Strong emphasis on on-scene stabilization prior to transport
- Greater opportunity for treat-and-release
- Often in areas of less aggressive med-mal climate

American College of Emergency Physicians'

40

Take-Home Points

- •EMS is broad sweeping and touches all aspects of society
- •The medical director faces a multitude of unique challenges depending on the system and environment that his/her EMS providers are operating in
- •Active, engaged, and knowledgeable medical directors are the key to any successful EMS system

American College of Emergency Physician ADIANCING EMERGENCY CASE _____/

50

	<u> </u>	
	_	
	- —	
	_	
	- —	
	- —	
	_	
	_	
	_	
	<u> </u>	
	_	
-		
	_	
	- <u>-</u>	
	- <u>-</u>	