EMS Subspecialty Certification Review Course

1.1.2 Airway Compromise / Respiratory Failure

1.1.2.3 Pros and cons of drug-assisted intubation

1.1.2.4 Tracheotomy complications

2025

1

Learning Objectives

Upon the completion of this program participants will be able to:

- Describe basic categories of device to secure airway
- Provide initial ventilator settings for the uncomplicated patient
- Highlight pros and cons of drug-assisted intubation
- List 3 major tracheotomy complications

American College of Emergency Physicians

2

Learning Objectives

Upon the completion of this program participants will be able to:

- Describe the airway methods used in EMS
- Describe the pros and cons of different airway methods
- Define the role of drug facilitated intubations
- Speak to the use of non-invasive ventilation
- Summarize the controversies in airway methods

American College of
Emergency Physician:

Portable ventilator settings for a patient with normal lung mechanics should target the following:

- A. PaO2 > 100 mmHg
- B. Peak inspiratory pressure < 35 cm H20
- C. FiO2 100%
- D. PaCO2 ≤ 35 mmHg

American College of Emergency Physician

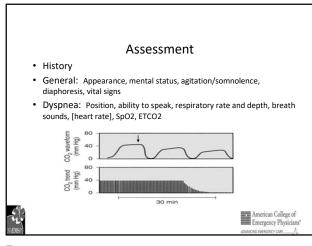
4

In a patient with tracheostomy site bleeding:

- A. Massive bleeding should be first managed by cuff hyperinflation
- B. 10% of patients with tracheoinnominate artery fistula present with sentinel hemoptysis
- C. Peak incidence is within the first 3 days postop
- D. Patients s/p laryngectomy can be orally intubated

American College of Emergency Physician

5


Airway Compromise / Respiratory Failure

- Goals:
 - $\, \mathsf{Recognize}$ severity of disease
 - Provisional diagnosis to guide course of treatment

American College of Emergency Physician

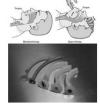
7

Differential Diagnosis

- Which organ system is causing dyspnea?
 - Pulmonary
 - Cardiac
 - Psychogenic
 - Infectious
- Management options
 - Target: adequate ventilation / gas exchange
 - Do no harm

8

Specifics of 1.1.2.1. airway procedures and adjuncts are addressed in 1.4


Procedures

American College of Emergency Physician

Establishing the Airway

- The most fundamental EMS skill
- Basic airway methods
 - Opening with head tilt/chin lift
 - Opening with jaw thrust method
- Basic adjuncts
 - Insertion of OPA and NPA
 - EMS personnel should use one of these devices during BVM ventilation

10

Oxygenation

- Devices: Nasal cannulae and masks
- Appropriate uses
- Spontaneously breathing patients
- Open airway
- Intact protective reflexes
- NC: low flow 2-5 L/min = Fi02 20-40%
- Simple mask: 6-10 L/min = FiO2 40-60%
- NRB: 10-15 L/min = FiO2 >90%

American College of Emergency Physicians*

11

Oxygen: Indication

- · Standard practice
 - Provide O₂ to all patients with actual or potential hypoxia
- Best to base O₂ supplementation on clinical findings
 - Beware of "treating the machine", i.e. $\ensuremath{\mathsf{SpO}_2}$
- Tachypnea may precede hypoxia, hypercapnia and apnea

Ventilation

- Bag Valve Mask (BVM)
 - Primary method for providing ventilation without invasive device
 - Key components
 - Self inflating bag
 - · Oxygen reservoir
 - Conforming face mask
 - +/- PEEP valve
 - Primary indications
 - Hypoventilation
 - Apnea

13

Bag-Valve-Mask (BVM) Ventilation

- Difficult to perform
- Two hands/"thumbs down"/two operators
- Lift the mandible into the mask vs pushing mask onto mandible

 (Easy)

- Prolonged resuscitation
- Difficulty is a driver for invasive airway techniques

Gastric insufflation/regurgitation/aspiration

14

Demand Valve Ventilation *Not widely used*

- Oxygen-powered
- Delivers high flow O2 through a mask via a trigger valve
- Rescuer can use both hands on mask and trigger ventilation with one finger
- Limitations
 - Potential barotrauma
 - No ability to gauge lung compliance

 American	Callega
Emergenc	y Physicia

Invasive Airway Management

- Placement of airway tube (either in trachea or obturating esophagus) to facilitate oxygen delivery and ventilation
- Indications
 - -Hypoventilation or apnea
 - -Potential for airway compromise

16

1.1.2.1 Devices for securing airway

- Supraglottic airways
- Endotracheal intubation
- Cricothyrotomy

17

Supraglottic Airway / Extraglottic Airway aka "Alternate Airway"

- Invasive airway device to facilitate ventilation without endotracheal intubation
- Used as either a primary or backup airway
- Numerous options with varying level of evidence to support efficacy

Supraglottic Airway / Extraglottic Airway

aka "Alternate Airway"

- · Characteristics:
 - Blind insertion
 - Goal is NOT to place in trachea (some can function in this position also)
 - Skill acquisition and retention generally easier than endotracheal intubation
 - Broader range of providers may use many are within scope for EMT and advanced

American College of Emergency Physicians

19

Supraglottic Airway / Extraglottic Airway

aka "Alternate Airway"

- · Some types of supraglottic airway
 - King
 - iGel
 - LMA
 - SALT
 - Combitube
- Some have inflatable component(s) to seat the device and seal off esophagus to limit aspiration

20

Esophageal Tracheal Combitube

- · Double lumen tube
 - Distal and proximal balloons
- Blind insertion
- Usual placement is <u>esophageal</u>
 - Longer blue tube delivers air to trachea via perforations in the tube
- If tracheal placement:
 - $-\,\mbox{\sc Ventilate}$ through shorter white tube

American College of Emergency Physicia

King Laryngeal Tube (LT)

- Resembles an ETC but has only one lumen
- Single port inflates both balloons simultaneously
- Strengths
 - Simple
 - More consistent esophageal placement
 - More compact

22

Laryngeal Mask Airway (LMA)

- Blind insertion
- Surrounds laryngeal structures and seals with a surrounding cuff
- Widely used in the operating room
- Slow (but increasing) prehospital adoption due to concerns about airway protection and concerns about dislodgement

VIEWS)

23

Endotracheal Intubation

• Oral ETI most common method

American College of Emergency Physician

Nasotracheal Intubation

- Requires intact respiratory drive
 Option for awake intubation

 - Can be used with intact gag reflex
- Potential when patient access limited or patient cannot lie down (e.g. crash victim still in vehicle)
 Blind technique, can be difficult

- Adverse events:

 Nasal hemorrhage, cribriform plate injury, sinusitis
- Adjuncts:
- Endotrol tube
- Beck airflow monitor

25

Other Intubation Techniques

- Gum elastic bougie (aka Eschmann stylet)
- Video laryngoscopy
- Digital Intubation
- Lighted stylet
- Retrograde intubation

26

Other techniques

- Nasotracheal intubation is significantly less prevalent in EMS in recent years
- Apneic oxygenation use of continuous high flow nasal oxygen during intubation
- Use of magills for foreign body removal

Confirmation of Airway Placement

- · Confirmation and re-confirmation is crucial in EMS
- · Waveform EtCO2 now considered standard of care
- Previously recommended using multiple methods
 - Auscultation
 - EDD (bulb)/Syringe
- Recheck with every patient movement and prior to handoff at hospital

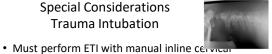
28

End-Tidal CO₂ and ETI

- Colorimetric
- Digital
- Waveform
 - Most accurate and best device for prehospital use
 - Allows for continuous verification
 - Graphically displayed
- · Effectively, continuous waveform capnography has become standard for verification and monitoring of endotracheal tube placement

29

Securing the Airway


- High risk of tube dislodgement in field
- Methods
 - Adhesive tape wrapped around neck (Lillehei method)
 - Umbilical twill tape
 - IV or O2 tubing
 - Commercial tube holders
- Supraglottic airways must be secured using tape or commercial holder (Carlson and Wang PEC 2009)
- Manually holding tube strongly discouraged
- Consider C-Collar

	milettean Coneg	COL
	Emergency Physi	cians
ADVAN	ING EMERGENCY CARE	<u> </u> Λ

Special Considerations Trauma Intubation

- stabilization
 - Limits head extension and glottic exposure
- Some experts question value of manual stabilization
- Some studies have shown increased mortality in intubation in penetrating trauma patients

American College of Emergency Physicians

31

Special Considerations Pediatric Intubation

- Larynx more <u>superior</u> and <u>anterior</u>
 - More difficult laryngoscopic technique
- ET Tube Size
 - $-4 + [Age (years) \div 4]$
- ET Tube Depth (cm)
 - $-[Age \div 2] + 12$

32

Drug Facilitated Intubation (DFI)/DAAM

- "Use of IV sedative and/or neuromuscular blocking agents to facilitate ETI in patients with intact protective airway reflexes"
- Includes:
 - RSI (rapid sequence intubation/induction)
 - DSI, RSA, SAI

NAEMSP Airway Compendium

- · Position Statements on:
 - Mechanical Ventilation
 - Trauma Airways
 - Cardiac Arrest
 - Novel Techniques
 - Optimizing Physiology
 - Training & Education
 - Pediatric Respiratory Distress
 - DAAM
 - SGA
 - Manual Ventilation (BVM)
 - QI
 - Surgical Airways

Rapid Sequence Intubation (RSI)

- Indication: Need for emergency airway and ventilatory control in patient with intact protective airway reflexes
- Goals
 - Rapid ETI with optimal exposure
 - Minimal disruption of physiology
 - HR, BP, ICP

• Basic drugs: <u>sedative</u> + <u>paralytic agent</u>

35

RSI Technique

- IV/IO Access
- Position Patient
- Pre-oxygenate
- Rapid administration of pharmacological agents
- Laryngoscopy and intubation
- Verification and re-verification of placement
- Provision of ongoing sedation and paralysis
- Pediatric protocols may be different
 - Succinylcholine more controversial - Use of atropine

RSI Drugs - Etomidate 0.3 mg/kg IV - Midazolam 0.1 mg/kg IV • Neuromuscular Blockade - Succinylcholine 1-2 mg/kg IV - Rocuronium 0.6 mg/kg IV

• Sedatives

(Paralytics)

- Vecuronium 0.1 mg/mg IV

37

RSI Drugs

- Pediatric protocols may differ
 - Less use of succinylcholine
 - Use of atropine to prevent bradycardia

38

RSI Additional Considerations

- Complete abolition of airway reflexes and ventilatory drive
- Airway skills must be superior
- Alternate/rescue airway must be readily available
- May require enhanced airway training

Sedation Assisted ETI

Controversial Practice

- Sedation-only without paralytic
 - Ketamine or Etomidate
- "Traditionally" felt to be safer BUT
- Controversial
 - Less optimal intubating conditions
 - Same physiologic risk as RSI
 - Same training requirements as RSI

NIPPV: See Resp Module 1.3

- CPAP and BiPAP
- Used for acute respiratory distress WITH
 - Intact ventilatory drive
 - Protective reflexes
 - Intact mental status
- Indications:
 - Pulmonary edema and CHF
 - Other Asthma, COPD, pneumonia

American College of Emergency Physicians

41

Noninvasive Ventilation (NIPPV) CPAP & BIPAP

- High-pressure ventilatory pressure support through tight face mask
- <u>CPAP</u>: continuous positive pressure through both inspiration and exhalation
- <u>BiPAP</u>: separate pressures for both inspiration and expiration
- Many portable and disposable CPAP systems available now for a reasonable cost

American College of Emergency Physician

Noninvasive Ventilation (NIPPV) CPAP & BIPAP

- Physiologic effects
- Reduces work of breathing
- Increases intrathoracic pressure
- · Reduces preload and afterload
- Does not "blow water out of lungs"

43

1.1.2.2 Portable ventilator management

- Guide by using waveform capnography
- Pressure-cycle
 - Pressure support
- Volume-cycle
 - Continuous mechanical
 - Assist-control
 - Synchronized intermittent mandatory ventilation (SIMV)

American College of Emergency Physician

44

1.1.2.2 Portable ventilator management Parameters Mode Initial settings Assist control FiO2 100% Tidal volume 10 ml/kg Respiratory rate 12 / min Inspiratory flow 60 L/min Inspiratory:Expiratory ratio PEEP 5 cm H2O Ventilation goals PaO2 60-90 mm Hg PaCO2 40 mm Hg pH FiO2 7.35-7.45 40-60% Peak insp pressure < 35 cm H2O

1.1.2.2 Portable ventilator management

- Pros
 - $\boldsymbol{-}$ Frees provider for other tasks
 - Consistency in rate, volume, pressure
- Cons
 - Cost
 - Complexity
 - No ability to rapidly assess changes in compliance

American College of Emergency Physicians

46

Airway Controversies

- Does prehospital intubation improve survival?
 - Prehospital ETI has not been shown to provide a survival benefit
 - Gauche RCT: BVM vs. [ETI or BVM], no improvement in survival or neuro outcome in children
 - Davis: Worse outcome with RSI of TBI
 - (Other data in TBI lecture)
 - -PART, AIRWAYS-2, CAAM

47

Airway Controversies

- Adverse events associated with EMS ETI
 - -~44% peri-intubation hypoxia
 - -~10% peri-intubation hypotension
 - -~2% peri-intubation cardiac arrest
 - Inadvertent hyperventilation is common
 - Unrecognized Failed Airways with ETI $\underline{\&}$ SGA

Airway Controversies

- Difficult to acquire and retain ETI skill
 - ETI complex and difficult
 - National shortage in operating room training opportunities for EMT ETI training
 - Decreasing opportunities for ETI in field
 - Skill dilution

49

Airway Controversies

- BLS ETI?
 - Optional module in national EMT-Basic curriculum
 - Ability of EMT-Basic to attain and maintain ETI skill unclear
 - 2 Studies: Suboptimal ETI success (<50%) make it unlikely to see broad application.
- "Alternate airways" as primary airway device?
 - Strategy to improve CPR continuity

50

1.1.2.4 Tracheotomy complications

- Tube obstruction
- Stenosis
- Tracheocutaneous fistula
- Bleeding: thyroid vessels, tracheoinnominate artery, granulation tissue
- Post-Tracheostomy bleeding may be controllable by <u>hyperinflation</u> of cuff

Portable ventilator settings for a patient with normal lung mechanics should target the following:

- a. PaO2 > 100 mmHg
- b. Peak inspiratory pressure < 35 cm H20
- c. FiO2 100%
- d. PaCO2 ≤ 35 mmHg

American College of Emergency Physicians'

52

In a patient with tracheostomy site bleeding:

- a. Massive bleeding should be first managed by cuff hyperinflation
- b. 10% of patients with tracheoinnominate artery fistula present with sentinel hemoptysis
- c. Peak incidence is within the first 3 days postop
- d. Patients s/p laryngectomy can be orally intubated

American College of Emergency Physician

53

Take-Home Points

- Airway management is an essential EMS skill
- Many techniques, approaches and considerations for quality EMS airway management
- Must use multiple methods for tube confirmation
- Drug-facilitated intubation presents unique requirements and challenges
- Alternate airways provide additional airway options with less skill retention issues
- Airway skill attainment and maintenance are challenges
- Many unanswered questions in airway management

American College of Emergency Physician

	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	-	
	_	
	_	
	_	
	_	
	_	
-	_	
	_	
	_	
	_	
	_	
	_	
 	_	
	_	