EMS Subspecialty Certification Review Course

2025

- Orthopedics 1.2.2.1 Fractures/Dislocations
- 1.2.2.1.1 Splinting Using Nontraditional Materials
 1.2.2.1.2 Reductions without Anesthetics

American College of Emergency Physicians

Learning Objectives

- · Classify various types of fractures and dislocations
- Describe assessment and treatment of a suspected fracture or dislocation
- Identify proper splinting techniques
- Discuss the use of nontraditional splints
- · Identify when dislocation reduction without anesthesia may be indicated
- · Describe care of the amputated limb
- · Describe compartment syndrome and its symptoms

2

Management Approach

- Assessment begins with ABCDE
- Attention to life/limb threatening injuries
 - Address acute hemorrhage
 - Cover open fractures with sterile saline moist dressing
 - Assess neurovascular compromise
- Pain management is important
 - Splinting
 - Analgesia

• Decisions for reduction are situation dependent

Fractures

American College of Emergency Physicians

4

Fractures - Specific Considerations

Upper Extremity Fractures

- Clavicle Typically uncomplicated, sling
- Scapula 75% will have additional injuries (rib fxs, pneumothorax, upper extremity)
- Humerus Risk of axillary n/a injuries
- Elbow Supracondylar fxs are among most common in children
- Forearm/Wrist/Hand Typically just splint in position found

Lower Extremity Fractures

- Hip Common, 80% in elderly, if young likely other injuries
- Femur Risk of hemorrhage, use of traction splint is standard*
- Tibia Most commonly fractured long bone, risk of compartment syndrome (24-48 hrs after)
- Ankle Ottawa ankle rules not validated for PH, splint and transport

American College of Emergency Physician:

5

Pelvic Fractures

- · High mortality (10-15%)
- · Associated with other injuries (high force involved)
- · Anterior-posterior highest HD instability
- · Suspect when:
 - Significant torso trauma present
 - Patient in shock
 - Presence of perineal/flank hematoma, blood at urethra
 - Unstable pelvis (gentle assessment)
- Pelvic binder may be indicated
- · Transport to Trauma Center

American College of Emergency Physicians

Spine Fractures

- · Cervical spine most common
- · Suspect when:
 - Multiple traumatic injuries
 - Focal neuro symptoms
 - Neck/back pain and/or tenderness
 - Head injuries with ALOC (significant mechanism)
 - Distracting injuries
 - Torticollis in children
- Spinal shock: hypotension refractory to fluids, with bradycardia
- · Spinal motion restriction indicated

American College of Emergency Physicians

7

Dislocations

American College of Emergency Physician ADIANCING EMERGENCY CARE _____/

8

Dislocations - Specific Considerations

Shoulder>Knee>Elbow

Upper Extremity Dislocations

- Shoulder Most common major joint, typically anterior, risk of axillary n injury
- Elbow Most posterolateral, risk of ulnar n and brachial a entrapment
- Clavicle Posterior dislocation associated with serious intrathoracic injury (pneumothorax, vascular and tracheal injuries)
- Fingers Typically splint in position found, reduce after analgesia in ED

Lower Extremity Dislocations

- Hip Inherently stable joint, high force required, most have other major injuries (TC), 90% posterior, risk complications (AVN) if not reduced within 6 hours
 - Knee High risk of injury to popliteal artery, nerve bundle, delayed transport requires field reduction

American College of Emergency Physician

NAEMSP

Special Emphasis

- Areas of particular risk for neurovascular injury
 - Hip
 - Knee
 - Elbow

American College of Emergency Physicia

10

Splinting

American College of Emergency Physician

11

Splinting 101

- Indicated for fractures, dislocations, sprains
- Reduces: Pain, Hemorrhage, Risk for further injury, Loss of alignment after reduction
- General Principles:
 - Splint in position of comfort
 - Immobilize the joints above and below fracture site
 - Pad bony prominences
 - Assess neurovascular status before and after
 - $\boldsymbol{\mathsf{-}}$ Keep one surface visible for reassessments
 - Do not wrap too tight!
 - Document placement

American College of Emergency Physician

Splinting - Specific Considerations Bone Approach Clavicle, scapula, shoulder Sling and swathe

Humerus	merus Sling and swathe, short board	
Elbow	Short board A-splint (bent) or straight with short boards	
Forearm	Short board with sling	
Wrist, hand	Short board or pillow in position of function with sling	
Finger Malleable metal splint or tongue depressor with buddy spl		

Bone	Approach	
Hip	Backboard or long board splints, pillows	
Femur	Traction splint	
Knee	Short board A-splint (bent) or long board splints (straight)	
Tibia, fibula	Long board splints	
Ankle, foot	Pillow splint	
Toe	Buddy taping	
	Americ	

13

Traction Splints

- Indicated for isolated mid-shaft femur fracture - swollen, painful, deformed thigh
- Contraindication: Known or suspected pelvic fracture, knee fracture, near amputation/mangled limb
- · Benefits: Reduced pain, blood loss, neurovascular injury
- Downsides: Potential for scene delays, peroneal nerve palsies, pressure ulcers
- Optional equipment per NAEMSP*

*2025 NAEMSP Position Statement states either traction or static splinting is appropriate – content likely too new for exam

14

Pelvic Binders

- Unstable pelvic fractures can cause exsanguination
- High mortality (10-15%), A-P compression worst
- Typically, significant mechanism and associated injuries
- Field treatment with compressive binder may be indicated – reduce potential space / tamponade bleeding
- · Theoretical risk of worsening injury 'bony fragments'
- Optional equipment per NAEMSP

Open book pelvic fracture before and after application of binder

"Nontraditional" Splints

- Essentially, anything you can find that will safely and comfortably secure the injured part and minimize movement
- · Key features
 - Padding to protect skin/soft tissue
 - Rigid component to immobilize injury
 - Flexible material to secure it
- Examples:
 - Pillows, Sleeping bags, Clothing $\,$
 - Tree branches, ski poles, Backpack frame
 - Water bottle (weighted traction)
 - "Buddy" taping

16

Field Reductions

- Two main indications:
 - 1. Austere environment, delays to definitive care
 - 2. Pulseless or neurologically devastated extremity
- Risks of additional injury, converting to open, inadequate analgesia
- Assess neurovascular status before/after the procedure

17

Amputations

DO

- Clean stump with saline and cover with saline moistened sterile gauze
- Splint (assume fracture present)
- Locate amputated part, wrap in saline moistened gauze, transport in plastic bag placed on ice
- Prioritize Trauma Center for major trauma (ideally reimplantation center)

DONT

- Prognosticate reimplantation
- Clamp vessels or manually debride
- Submerge amputated part in water or place directly on ice

Compartment Syndrome

- Muscle and tissue ischemia caused by rising pressures within a closed fascial compartment.
 Common locations: Anterior tibia, forearm, wrist/hand,
- supracondylar fractures in children
- Symptoms: 5Ps
 - Pain
 - Pallor
 - Paresthesia

 - ParalysisPulselessness
- · Caution when splinting

19

Question

- Which of the following is a potential site of devastating neurovascular injury following dislocation?
 - A. Ankle
 - B. Finger
 - C. Knee
 - D. Shoulder

20

Question

- Which of the following is a potential site of devastating neurovascular injury following dislocation?
 - A. Ankle
 - B. Finger
 - C. Knee
 - D. Shoulder

Take-Home Points

- Assess neurovascular status BEFORE and AFTER care
- Treatment: splinting and pain control
- Indications/contraindications of traction splints
- Use of pelvic binders for unstable pelvic fractures
- Complications from dislocations (AVN, popliteal injury, etc.)
- Nontraditional splinting techniques think outside the box
- Indications for field reduction without anesthesia
- Care of amputations and compartment syndrome

American College of Emergency Physicians

22

	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	-	
	_	
	_	
	_	
	_	
	_	
-	_	
	_	
	_	
	_	
	_	
	_	
 	_	
	_	