When You’re Stuck in the Middle: Caring for Residents During Major Events.

by Tom Grawey, DO

Case Scenario: It is the first couple hours of your shift on the rig while you\’re working on some chores at the station.  Your partner mentions that his wife is running her first marathon today which happens to pass through your coverage area.  While some of your colleagues are scattered throughout the race path, you are ready to respond to a call from those not participating in today\’s activities.

A few minutes later a call comes in from the dispatcher for a 68 y/o male who is having chest pain a few blocks away.  While on any other day this would be a pretty routine occurrence, given the race, you and your partner take a few extra minutes to map out a route to the scene with the current road closures in place.  With all of the detours and traffic congestion you realize it will probably take an extra 5-10 minutes to get to the scene.  A few questions start to run through your head:  

Do residents living in the area of a mass gathering event receive a different level of care when an event is taking place?

How much is caring for this population discussed during the planing stages of the event?

What are some strategies that can be used to mitigate the challenges of providing medical care to non-participants who experience illness during a mass gathering in their neighborhood?

Literature Review:

During a mass gathering the daily EMS needs of the community do not stop.  Undoubtedly one of the biggest challenges when planning an event is trying to have as little impact on the residents living in the area as possible.  Road closures, eliminated parking spots, large amounts of pedestrians walking through a neighborhood and a redirection of the attention of first responders are just some inconveniences that residents experience during a marathon or similar activity.

A particular focus of our profession is the effect that mass gatherings have on access to prehospital medicine.  As people who are helping plan the emergency response to an event, it is responsibility of EMS to ensure that participants, attendees and residents of the community all have appropriate access to medical care should they need it.  A recent study was published in the New England Journal of Medicine entitled โ€œDelays in Emergency Care and Mortality during Major U.S. Marathonsโ€ evaluated whether there are delays in care for nonparticipants with a medical emergency who live close to marathon routes. [1]

This study analyzed Medicare data to identify patients who were hospitalized for acute myocardial infarction (AMI) or cardiac arrest among Medicare beneficiaries in 11 cities that hosted large marathons over a 10 year period from 2002-2012.  The idea was that this cohort would be unlikely to be running the marathon.   For this population, 30 day mortality was compared among three groups – those near the race hospitalized on the same day as the marathon, those near the race hospitalized on the same day of the week either 5 weeks before or 5 weeks after the marathon, and those with these conditions who were hospitalized on the same day as the marathon but in a surrounding zip code that was not affected by the race path.  In addition to patient outcomes, the study reviewed ambulance transport data to answer two questions – whether transport times varied before or after noon on marathon days, and whether transport times varied on marathon vs non marathon dates. 

In total, the study examined 1145 hospitalizations for AMI or cardiac arrest on marathon dates in affected hospitals compared to 11074 on non marathon dates in the 10 weeks surrounding the event.  Patient age, sex, race and past medical history were statistically similar on all dates.  Despite the race taking place there was no difference in daily frequency of hospitalizations for these complaints between marathon and non-marathon dates.

The research team found that 30 day adjusted mortality was higher among those admitted to marathon-affected hospitals on marathon dates than on non-marathon dates (28.6% [95% CI, 26.1 to 31.3] vs 24.9% [95% CI 24.1 to 25.6], absolute adjusted risk difference 3.7% [95% CI, 1.1 to 6.4]).  In control hospitals, it was found that adjusted mortality was similar on marathon (25% [95% CI, 23.6 to 26.4]) and non marathon dates (24.7% [95% CI, 24.3 to 25.2]).  Transport times increased by an average of 4.4 minutes on marathon vs non marathon dates (95% CI, 1.3 to 7.5 p=0.0005) even though mileage traveled was similar.

When trying to account for possible causes of increase in mortality, further analysis revealed that frequency of hospitalizations, distribution of home zip codes of all patients, CABG, PCI or those receiving circulatory support did not differ in either group and it was concluded that differences in morality were not attributed to out-of-towners, hospital staffing or patients forgoing care.  Of note, a high percentage of patients presenting with AMI in regions affected by a marathon had concurrent cardiac arrest on race than on non race days (5.1% vs 2.6%, absolute difference, 2.5%; 95% CI, 1.4 to 3.5; P<0.001) while this was not a significant finding in control hospitals.

A Discussion of the case raised a few key points:

 “A well planned marathon route should interrupt as little of city traffic as possible for as short a time as possible. For example, the route on one of our events, the Milwaukee Running Festival, was recently modified because it landlocked a section of the city for too long. I would imagine that any large event or other disruption (construction, parades, arena sporting events, Summerfest) disrupt the flow of traffic enough to delay emergency medical care, but I would argue that the health and lifestyle benefits of these events outweighs the negatives. Nevertheless, the lesson on the importance of careful planning to ensure as little community disruption as possible is noted.โ€ โ€“ Ben Weston, MD

Dr. Weston mentions something that isnโ€™t discussed in the case or the NEJM Article โ€“ the benefits of the race to the participants.  The decrease in heart disease associated with regular exercise is well known and published countless times in the literature.  Certainly training for a marathon far exceeds the current CDC recommendations of just over 20 minutes a day of moderate-intensity aerobic activity and 2+ days a week of muscle strengthening activities. [2] While the personal choice (and health limitations) preventing some from participating in a race should not be held against them there is a greater good in mind when a community plans a marathon and as with any medical decision a risk/benefit approach must be used when planning an event.

Take home: Any event large enough to cause road closures and an influx of people is likely to cause delays in care to nonparticipants.  This study shows that in the case of large marathons, these obstacles may worsen outcomes for residents living in race affected areas.  EMS physicians and race medical directors must remain vigilant to ensure that a large event can accomplish its goals while creating as few interruptions and delays in medical care to nonparticipants as possible.

Grawey_bio.001.jpeg

References:

1. Jena AB, Mann NC, Wedlund LN, Olenski A. Delays in emergency care and mortality during major US marathons. N Engl J Med. 2017;376:1441-1450. doi: 10.1056/NEJMsa1614073

2. Physical Activity Guidelines Advisory Committee. Physical Activity Guidelines Advisory Committee Report, 2008. Washington, DC: U.S. Department of Health and Human Services, 2008.

Share:

More Posts

About the Author

Scroll to Top